

SYNTHETIC DATA AUGMENTATION FOR MITIGATING BIAS IN REAL WORLD DATA

Presented by:

Lamin Juwara
Postdoctoral Researcher
University of Ottawa

Outline

Introduction to Data Bias

1

Define data bias, how it is induced, and some common problems

Examples in Biomedical Research

Give some examples in the media and in biomedical research.

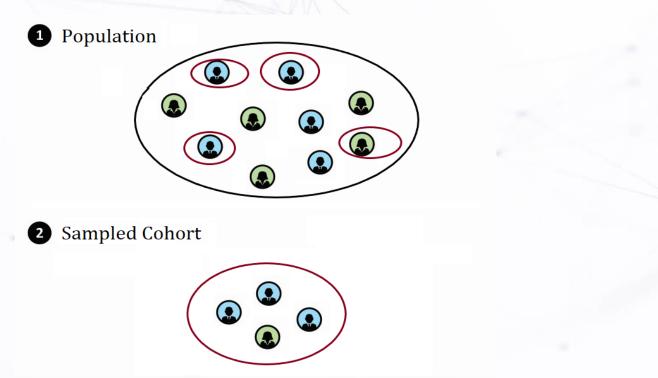
Approaches for Mitigating Bias

An overview of bias mitigation approaches and the proposed Synthetic Minority Augmentation approach

Model Evaluation & Applications

Describe model training and evaluation. Applications to simulated data and case studies.

Conclusions


Summarize the study findings and limitations.

What is data bias?

- Data bias is pervasive in biomedical research, especially in large-scale observational datasets.
- In these settings, the rules that govern group assignment are generally unknown or without proper design.

Fig 1. (1)->(2) Hypothetical example of sample selection bias

How data bias occurs

- For example, a sex variable where women are under-represented compared to the population
- Such biases can occur at the data collection or analysis stage:
 - difficulty in collecting data from certain groups due to cost, access, or nonresponse
 - the data collection process is inherently biased
 - by excluding certain groups during analysis
- It is different from missingness -- entire records are missing instead of specific observations within collected records

Popular examples

Watch

Health

WORLD

Amazon ditches AI recruiting tool that didn't like women

By Jeffrey Dastin · Reuters Posted October 10, 2018 6:46 am

Racial bias found in widely used health care algorithm

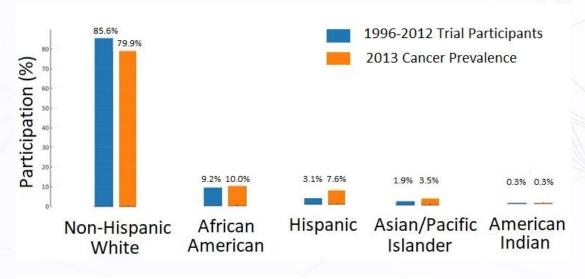
An estimated 200 million people are affected each year by similar tools that are used in hospital networks

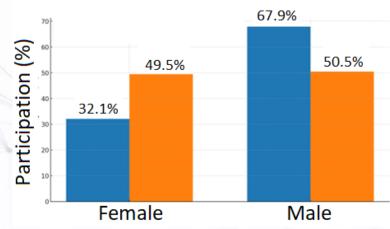
Nov. 6, 2019, 2:38 PM EST / Updated Nov. 7, 2019, 11:07 AM EST

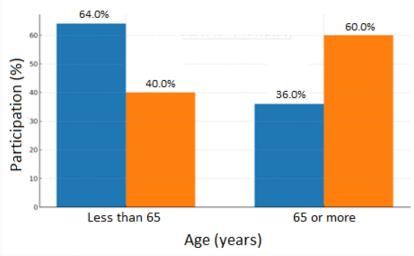
By Quinn Gawronski

THE GLOBE AND MAIL*

Bias behind bars: A Globe investigation finds a prison system stacked against Black and Indigenous inmates


Federal inmates' risk assessments determine everything from where a prisoner is incarcerated to what rehabilitation programs they are offered. After controlling for a number of variables, The Globe found Black and Indigenous inmates are more likely to get worse scores than white inmates, based solely on their race


PUBLISHED OCTOBER 24, 2020 UPDATED NOVEMBER 11, 2020

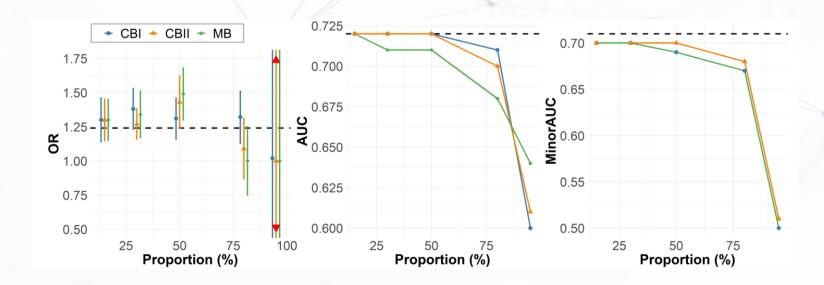


Examples in biomedical research

Participants in all Therapeutic Cancer Trials, 1996-2012 (N = 52,170)

Duma, N., et al. "Representation of minorities and women in oncology clinical trials: review of the past 14 years. J Oncol Pract. 2018; 14 (1): e1–e10." Duma et al. conduct a survey of 1012 (2017).

Classification of biases


Type of Bias	Description	Example	
Marginal bias	observations from a specific group are omitted from the sampled dataset based solely on the biased variable.	exclude females irrespective of other covariates in the data	
Conditional bias I	occurs when an additional covariate that is weakly associated with the biased variable influences the exclusion	exclude female participants with low education level	
Conditional bias II	an additional covariate that is strongly associated with the biased variable influences the exclusion	exclude female participants in low income category	

Problems with biased datasets

Bias in the training cohort results in:

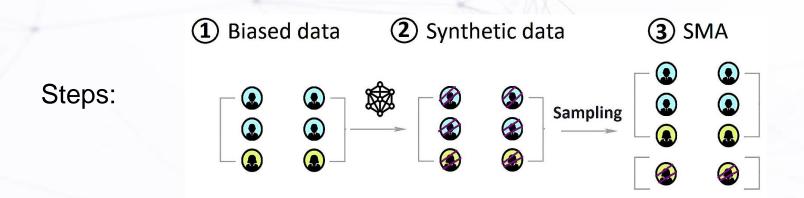
- Imprecise predictions
- Inconsistent estimations
- Biased estimates of covariate effects

Why it matters

Representation in biomedical data:

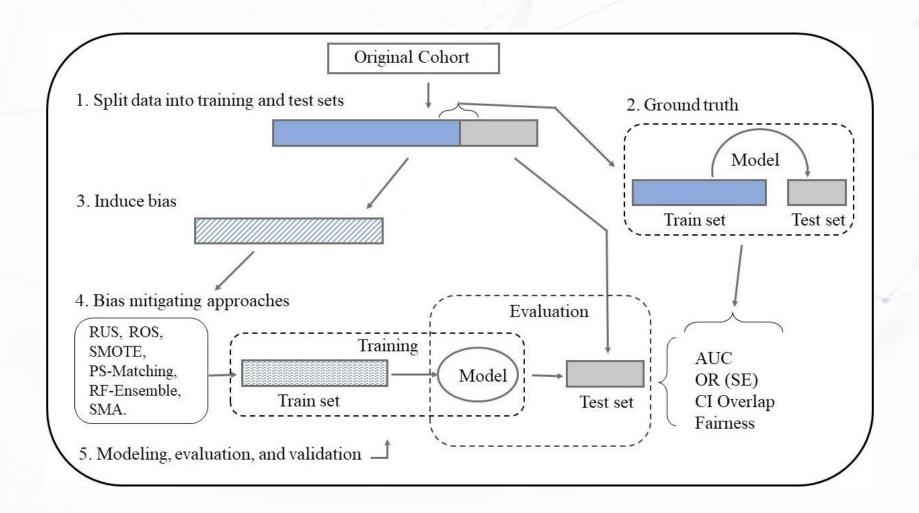
- Ensures results are applicable to the broader population.
- Helps identify potential differences in outcomes. e.g., differences in treatment responses to certain medications.
- From an ethical standpoint, all groups should have a fair participation opportunity.

Mitigating Data Bias


Approaches for Mitigating Data Bias

- Random oversampling (ROS) and undersampling (RUS)
- SMOTE
- Propensity score (PS) methods (e.g., PS- matching)
- RF ensembles
- Proposed: Synthetic Minor Augmentation (SMA)

Proposed Approach


Synthetic Minor Augmentation (SMA)

- Construct a synthetic version of the biased data using sequential synthesis based on gradient boosting decision trees.
- 2. Sample observations from the bias-inducing (i.e., minor or underrepresented) partition of the generated synthetic dataset.
- 3. Augment the samples with original biased data to create a complete dataset.

Model Training & Evaluation

Applications

- We perform two types of analyses:
 - Simulation studies
 - Four real datasets
- The analytical workload assumed is a binary logistic regression model

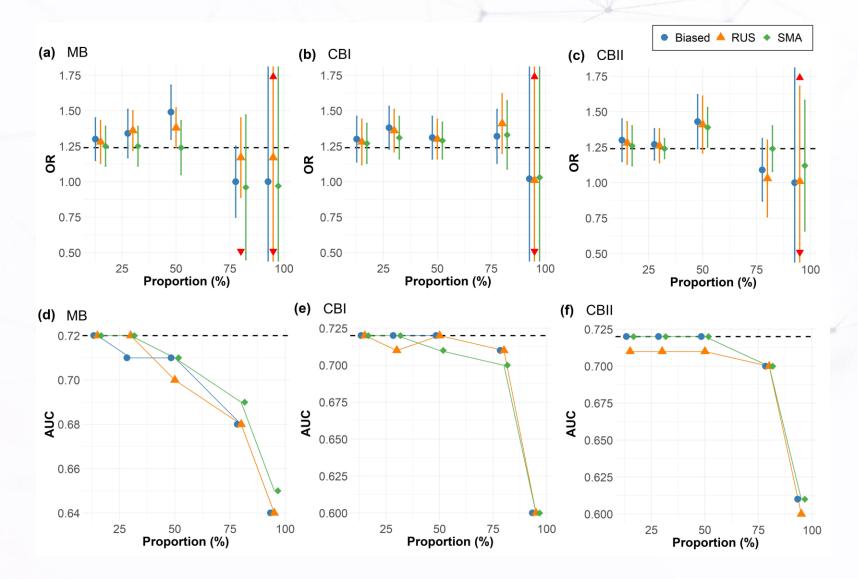
1) Simulation studies

Simulate a binary Outcome data:

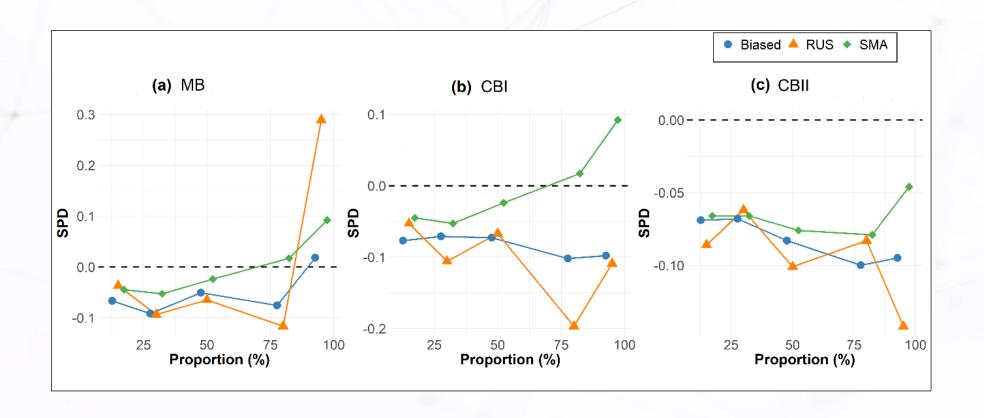
We postulate the logistic regression model:

$$P(Y=1) = expit(\alpha + \beta_z Z + \beta_{X1} X_1 + \beta_{X2} X_2 + \beta_{ZX2} Z X_2 + \beta_U U)$$

- Z~binomial(p=0.5), X_2 | Z=1~binomial(p=0.4), and X_2 | Z=0~binomial(p=0.39)
- U~log-Normal(12,3.5), a strong predictor of Y and independent of Z, X₁, X₂
- Set of parameters:


$$\alpha = \log(0.5)$$
, $\beta_z = \log(1.25)$, $\beta_{X1} = \log(0.3)$, $\beta_{X2} = \log(2)$, $\beta_{ZX2} = -0.47$, and $\beta_U = \log(0.5)$.

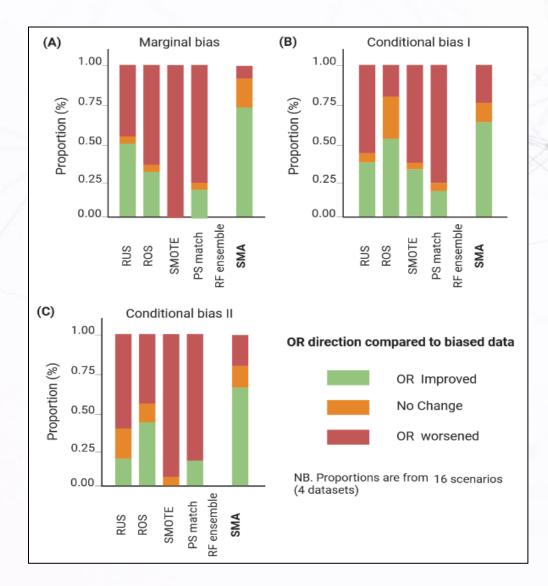
Generate 500 data cohorts of n=5000 each.

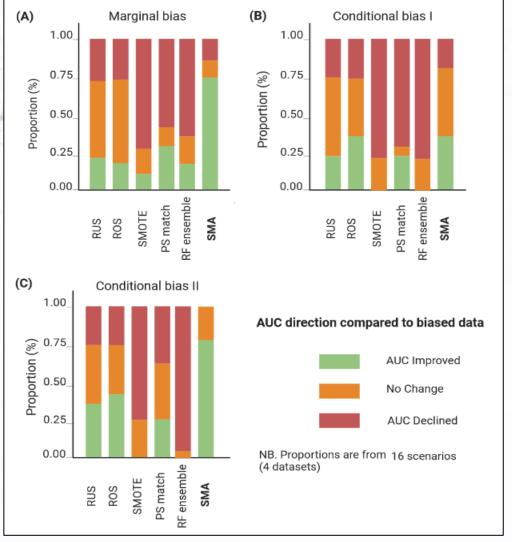

Odds ratio and AUC estimates

MB = Marginal bias; CBI = Conditional Bias I; CBII = Conditional Bias II.

Fairness: Statistical Parity Difference (SPD)

2) Real datasets


Summary of datasets


Dataset	Description	Outcome	Biased covariate	Conditioning Covariate
1) Cardiovascular	63522 observations	CCHS status	Gender	CBI: New immigrants
Health (CCHS)	8 variables	CCH3 status	(Female = 45.2%)	CBII: Marital status
2) N0147 Colon	1543 observations	Death	Bowel obstruction	CBI: Gender
Cancer trial (PDS)	10 variables	Death	(No = 83.8%)	CBII: BMI
3) Danish Colon	12855 observations	Destananting	Gender	CDI. D. DNI stars
Cancer data	192 variables (total)	Postoperative	1-47	CBI: P-PN stage
(DCCG)	9 selected	complications	(Female = 55.9%)	CBII: ASA
4) Breast Cancer	277 observations	BC class	Age	CBI: Left/Right breast
(UCI)	10 variables	BC Class	(20-49 = 45.5%)	CBII: Menopause

NB. CBI represents Conditional Bias I and CBII is Conditional Bias II.

Summaries for all datasets: Odds ratio and AUC

Conclusions

- Model parameters are significantly affected by bias
- AUC is not significantly affected by bias
- In low to medium bias severity (less than 50% missing proportion), SMA produces the results with:
 - the least bias (difference between the model estimate and ground truth).
 - the best precision (smallest standard errors) in estimating the regression coefficient than other approaches.
- Above 50% bias, there isn't an obvious best method
- Above 80% bias, mitigation methods generally perform poorly it is difficult to compensate for extreme bias irrespective of the method is chosen
- SMA gives the best fairness estimates among groups

How should SMA be adopted?

- Use as a sensitivity analysis tool
- If the biased mitigated estimates matches the biased estimates, the results could be reported with more confidences
- If the mitigated results are different, the results should be reported with caution
- Ideally, steps should be taken to recruit more individuals

Notes on the synthesis stage

- The type of generative model used was a sequential tree-based synthesizer
- Each model in the sequence was trained using a gradient boosted decision tree
- Bayesian optimization for hyperparameter selection
- Each combination of hyperparameters was evaluated using 5-fold cross validation on the training dataset during tuning.
- For the synthesis of categorical variables, synthetic values are generated based on predicted probabilities.
- boosted trees do not output correct probabilities and these need to be calibrated, especially as the number of iterations increases
- For example, beta calibration for imbalanced categorical outcomes.